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Universality classes for self-avoiding walks in a strongly disordered system
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We study the behavior of self-avoiding walk8AWS) on square and cubic lattices in the presence of strong
disorder. We simulate the disorder by assigning random enetglen from a probability distributioR(€) to
each sitglor bond of the lattice. We study the strong disorder limit for an extremely broad range of energies
with P(e€)«1/e. For each configuration of disorder, we find by exact enumeration the optimal SAW of fixed
length N and fixed origin that minimizes the sum of the energies of the visited @telsonds. We find the
fractal dimension of the optimal path to Egpt= 1.52+0.10 in two dimension§2D) andaopt= 1.82+0.08 in
3D. Our results imply that SAWSs in strong disorder with fixsldare much more compact than SAWSs in
disordered media with a uniform distribution of energies, optimal paths in strong disorder with fixed end-to-
end distanceéRr, and SAWSs on a percolation cluster. Our results are also consistent with the possibility that
SAWs in strong disorder belong to the same universality class as the maximal SAW on a percolation cluster at
criticality, for which we calculate the fractal dimensiai,,,= 1.64+0.02 for 2D andd,,,=1.87+0.05 for
3D, values very close to the fractal dimensions of the percolation backbone in 2D and 3D.

DOI: 10.1103/PhysReVvE.65.056128 PACS nunier64.60.Ak, 05.45.Df

I. INTRODUCTION ~1.22 in 2D andd,,~1.42 in 3D. These values are similar
to the fractal dimensions of the typical path of a passive
The problem of self-avoiding walkéSAWSs) in different  tracer in the problem of the ideal flow through the percola-
types of disorder is related to problems such as polymers ition cluster, a problem relevant for oil recovg8j. This fact
porous media and spin glasses. For SAWSs in the absence &fconsistent with the possibility that the strong disorder limit
disorder, the average root mean square of the end-to-end dié- related to the percolation problem. .
tanceR scales with the lengthl asR~N”. Hence SAWs are _ Smaileret al.[3] studied the problem of minimum-energy
fractals with a fractal dimensiodsay=1/v. The values of fixéd-N SAWSs in which the energies are taken from uniform
dsawin two dimensions2D) and 3D are well knowr{see and Gaussian distributions. This kind of disorder is called

: ; k disorder and is different from the strong disorder case
Table |). The effects of disorder odiga\ has been the subject weat ) . .
of many studie§1—7]. Recently, thSeAr\(/av has been much iJnter- studied here. They studied the asymptotic behavior of the

est in the problem of finding the optimal path in a disordered < & >-are end-to-end distaiReersusN and found that
P 9 P P ;ﬁe fractal dimension in this case is smaller than in the case

energy Ianplscape. _The o_ptimal p‘?“h can be defineq as f f the pure SAW(see Table )l The fixedN problem for
lows: ponspler ad-dimensional lattice, where each s(aer strong disorder has not yet been studied.

bond is assigned by a random energytaken from a given Numerical studies of fixeth SAWs on percolation clus-
distribution. The optimal path is the path for which the sum
of the energies along the path is minimal. There are two
kinds of the optimal path problems. In the first kiftked-R
problem, the starting and the ending sites of the path ar
fixed, but the length of the path is not fixed. In the second

TABLE |. Fractal exponents characterizing the end-to-end dis-
tance of SAWs as a function of the length as well as the fractal
&imension of the backboneg .

kind (fixedN problem, the starting site(origin) and the 2D 3D

length of the pathN are fixed, but the ending point is not

fixed. These problems are relevant in many fields such asdsaw 4/3° 1.699°

spin glasse$l], protein folding[2], and the traveling sales-  d,y, (weak, fixedN) 1.25° 1.4¢

man problen{8]. Topt (strong, fixedN) 1.52+0.10 1.82+0.08
Cieplaket al.[4] and Portoet al. [5] studied numerically ¢, . (percolation ap,) 1.29¢ 1.58

the behavior of the average path lendthfor the fixedR Aoy 1.64+0.07 1.87+0.05

minimum-energy SAW. If the distribution of energiesis dopt (strong, fixedR) 1.2 1.48

uniform or Gaussian\ is proportional toR and henced, ds (backbong 1.643% 1.8F

=1. The situation is different in the strong disorder limit. In

this case, the total enerdy is dominated by the maximum ages [20]. eRef. [23].

value of e along the path. This case can be realized if thebref, [21]. Ref. [24].

probability densityP (€)= 1/e for an extremely broad range °Ref.[3]. 9Ref. [6].

of energies. It was foundi4,5] that No«R%pt, where dopt  “Ref.[7]. "Ref.[22].
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ters at criticality have been performed using exact enumerdor the current step lead to intersection, we backtrack our
tion [7]. The case of percolation clusters can be regarded aSAW and find the step for which a new direction is available.
the quenched disorder case in which the energies can take this way, the algorithm constructs the tree of all possible
values of 0 with probabilityp=p. and« with probability = SAWSs in a certain order.
p=1-p., wherep, is the percolation threshold. The results = For each configuration of disorder, we find the minimum-
suggest that the exponents are not significantly different fronenergy SAW[12]. Using this method, we obtain each mini-
those of a pure SAWsee Table)l mum SAW of up to 60 steps in 2D and up to 40 steps in 3D,
Here we study the minimum-energy fix&-SAW in  in typically 1¢ realizations of disorder. We apply this
strong disorder. We find th& scales asNYdopt, with aopt method for strong disorder of the site and bond cas&
—152+0.10 in 2D andaopt= 1.82+0.08 in 3D. These val- We computeR by averaging the square root of the end-to-

ues are significantly different from the values of the relateoe.nd distance of the minimum SAW for each cqnflguratlon of
problems discussed abo{@-7]. We present arguments that disorder. We calculated both the end-to-end distance and the
optimal SAWs in strong disorder limit belongs to the samedverage square radius of gyration and find no differences in
universality class amaximalSAWSs, defined to be the long- the values of the exponents. , -

est SAWSs on a percolation cluster. In order to test our hy- We also study the infinitely strong disorder linit- . In

pothesis, we numerically calculate their fractal dimension,thls limit, the sum of energies can be replaced by the largest

d,ay, for 2d and 3d and find that the value @, is very Value of the energy along the pdth4]. Our results for the

close 1o the valuaopt for fixed-N SAW in the strong disor- infinite limit coincide with the ones obtained witie=100.
der limit. The numerical value d,,,, found here is similar

to the fractal dimension of the percolation backbone and is
significantly larger than the values df,,, previously re-
ported[10]. Thus we conjecture that the three modgéle
fixedN SAW in strong disorder, the maximal SAW on a
percolation cluster, and the percolation backbhdmsong to X
the same universality class, characterized by equal fractaf] defined as
dimensions.

Ill. RESULTS

We study the asymptotic value at,pt for the minimum-
energy SAW in the strong disorder limit in two and three

dimensions. In order to finaOpt we use successive slopes

IN(N+1)—In(N—1)
IN(R%, )—In(R% 1)

dop(N)=2 ©)

Il. METHOD

We consider aN-step SAW with a fixed origin on ) - o
a d-dimensional hypercubic lattice with strong disorder. We estimate the errors fak,,(N) as the standard deviations
We simulate disorder by assigning a random enesgfk  of the valuesd,,(N) computed for 10 independent sets of
=1---L% to each site of the lattice, wheteis the linear ~10* configurations.
size of the lattice. We also study the case in which the ener- Figures 1a) and 1b) show the value Oﬁopt(N) vs 1IN
gies are assigned to the bonds of the lattice. The strong disor 2D and 3D, respectively, in comparison with the behavior
order case is simulated by selectiag from an extremely of these values for fixett SAWSs in the weak disorder and
broad distribution by generating a random numhber uni-  for regular SAWs. Both results are for the site case. In con-
formly distributed between O and 1, and choosieg trast with regular SAWs and SAWSs in weak disorder, the

=expfary. The parameter controls the broadness of the \5)yes ofd,p(N) in strong disorder have strong corrections
distribution. The probability density of such a distribution is : e . S~
to scaling, manifesting in the nonlinear behavioragf,(N)

U(ae) l=e<expa) versus 1N for 1/N—>9. Our attempt to achieve better straight
P(e)= 0 otherwise (1) line fits by plottingd,,(N) vs IN® for various 0<a<1
' suggests that the limiting value ngt(N) for N— o may be
The minimum-energy SAW is the configuration that mini- significantly larger than the vaIuef obtained in Fig. 1. As a
mizes the total energy result of these estimates, we repdgt,=1.52+0.10 in 2D
\ andaoptz 1.82+0.08 in 3D . This shows the minimum en-
_ ergy fixedN SAWSs in strong disorder to be more compact
E(N)_El € (2 than other types of SAWs studied earlisee Table)l
In order to better understand this type of SAW we study
among all possible SAWs of lengtthat start at the origin. the distribution of the maximum valug, of random vari-
We apply the exact enumeration method to generate eacdPlesri=a ‘ine, i=1,...N, for the minimum-energy SAW
SAW, using the “backtracking algorithn{’L1]. At each step, ©f different lengthN. This distribution is bell shaped, narrow,
the SAW hasz choices for the direction of the next step, @nd has a maximum at,=r* [see Fig 2a)]. We find that
wherez is the coordination number. If a particular choice of for N— the distribution becomes steeper in the vicinity of
the direction leads to a self intersection, we disregard thi§”- Moreover, we find that
choice and take the next possible choice for this step. After ~
the walk reaches the required lengdthor if all the choices [r* —pg| ~AINY, 4
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FIG. 1. Effective exponenfiOpt as a function of M for the
minimum-energy SAW, ifa) d=2 and(b) d=3, with strong site
disorder of strengtla=100 (O) with error barg—) compared with
the same problem in weak disorddrlY and with the pure SAW

(®@). The dashed lines are used as a guide for the eye to show tl ; 4 )
extrapolated values of the effective exponent in the limN-4/0. the result of Eq(13). The inset figure shows the maximum values
of the distributionr*, divided byp. (p. = critical probability as a

Note that since the dependencedyf,; on 1/N is not linear, the function of 1N with o= 1/2 for sites ©) and bonds [J). Here

results _of_ll_near extrapolation can be significantly smaller than theWe usea=100. (b) Plot of the distribution of the maximal threshold
actual limiting value.

valuesr ;,, overcome in the invasion percolation clusters of stze
indicated in the graph. The lines are used as a guide excef for
wherep, is the percolation threshold for bond or site perco-=4,8, and 16 that show the analytical results of E5J. The inset
lation, A is a positive constant and~0.5 [see inset of Fig. figure shows the maximum values of the distributidndivided by
2(a)]. p. (pc.=critical probability as function of 1IN, where o=36/91
The behavior of the distribution af,, resembles the be- [15.
havior of the distribution of the maximal threshold value in
the invasion percolation modgl5,16 for different cluster In analogy with our optimization problem, one can con-
sizesS, [see Fig 2b)]. In the invasion percolation model, struct the distribution of the maximal value of, of the
each site of the lattice is assigned a random threshpld threshold of the invaded cluster of si®e. This distribution
uniformly distributed on the interval@r <1. Initially, a site ~ can be explained in terms of the usual percolation theory. Let
at the origin is invaded and the invaded cluster is generateds assume that we select unblocked siteg <fr, and
from it. At each stage of the process, the boundary of thdlocked sites otherwise. Thus the valuergf can be inter-
invaded cluster consists of the sites not yet invaded, whiclpreted as the occupancy probabiljgyof a percolating site.
are the nearest neighbors of the invaded sites. The next sifuppose that in invasion percolation, we obtain a cluster of
invaded is the boundary site with the smallest value. of sizeS, with a value ofr ,,<p. This configuration, in terms of

FIG. 2. (a) Plot of the distributionP(r,/N) of the maximum
random numbers,, (associated with the energies along the optimal
path for different values ofN (different symbols in 2D (bond

s¢. The lines are used as a guide exceptNer 2 that indicates
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a regular percolation problem, corresponds to a percolatior 08 -

cluster with sizeS,=S, for a given percolation probability
p=rn,. Hence, the probabilityP(r ,<p|S,) in an invasion
percolation problem is equal to the probabil®(S,=S|p
=r,) in the conventional percolation problem. The latter

probability has been computed analytically for small cluster

sizesS, using exact enumeratidi 7],

S—1 2s+2

P(Sp=S|p)=1— 521 ;4 spi1-p)gs:, (5

wheregs, is the number of different clusters of sizeand

perimetert (91 4=1,06=2,037=4,038=2,...).Thus the
probability density ofr,,,P,(r,|S), in invasion percolation
can be expressed as

dP(S,=S[p=rm)

Pi(rylS)= ar.. (6)
and is shown in Fig. @) for small S, .
For S;—«, we have
P(SpBSI|p:rm)‘>Poo(rm)a (7)

whereP..(r,) is the probability of an infinite cluster, which

is the order parameter of the percolation problem, character-

ized by the critical exponens:

Pw~|rm_pc|'g F'm=>Pc,
P.=0 'm<Pc- (8)
Thus
. dP..(p)
im Py (/) =— ©
SIHCX) p p=rm

This limiting distribution is strictly equal to zero for,,
<p. and diverges asr{,—p.)? ! asrp,—p.+te.

For large finite S;, the distribution P,(r|S) is not
strictly equal to zero for ,<p., but rapidly decays as,,
decreases. It is knowfl5] that in the regular percolation
problem, forp<p.,

P(S,=S|p)~f((pc.—p)S),

wheref(x) decays exponentially as—«,o=1/(v,d;), v, is
the percolation correlation exponent, add is the fractal
dimension of the percolation cluster. Hence fp,,

P(rmSp|Sl)~f((pc_rm) Slg),

which means that the distribution of, rapidly approaches
zero forr,<p.—AS§ 7, whereA is some positive coeffi-
cient. The maximum of the probability densi®§y(r,,) is
reached at the point*, such thatd?f(x)/dx?| =0, where
X*=(p.—r*) S7.Hencer*=p.,—x*S “. In our problem,
dop~1.52 in 2D, v,=4/3 thus we can expecto

= 1/(vpaopt)%0.5 in good agreement with our numerical re-
sults in Fig. Za).

(10

(11)

PHYSICAL REVIEW E 65 056128

1S)
07t e (S i
——— p,=0.5207
06 b o ____-
P
04}
03
0.2
01 |
0

200
SI

100 300

FIG. 3. Linear plot of the random valuesas a function of the
cluster sizeS, for invasion percolatior(site casg The solid line
showsr as a function of the cluster siZg . The dotted line shows
the maximum value , as a function ofS,. The dashed line shows
p.- As the cluster size increases,— p. -

The similarities between invasion percolation and fikéd-
SAWs in strong disorder are not surprising, since for laage
our algorithm essentially selects the walks that minimize the
largest value of [14]. In invasion percolation, the value of
r(S,) for the last selected si§ fluctuates, sometimes reach-
ing the valuer ,,, which is the largest value among all pre-
viously invaded sitegssee Fig. 3. Suppose that the longest
possible SAW starting at the origin and staying inside this
invaded cluster has a lengtN,,.(S;). Then all optimal
SAWSs of lengthsN=N,,,.{S;) must stay inside this cluster
too. Moreover, the optimal SAW of length=N.{S)
must exactly coincide with the maximal SAW in the cluster
of sizeS,. ForN>N,,.{S)), the optimal SAWs will achieve
the maximalr ,, and stay inside the percolation cluster corre-
sponding to a new record value of the percolation probability
r.>rm, (see Fig. 4 As N grows, the record value af,
approaches the percolation threshp|d In Fig. 5, we show

a typical configuration of an optimal SAW in a strong site
disorder in 2D. We assign to each site white color if the site
has a value <r,, and gray color otherwise.

Sometimes, however, the record vahyeexceeds the per-
colation threshold. In this case,, may become an absolute
maximal record that is never overcome for larfeor S, . In
this case, the optimal SAW will try to minimize the second
largest value of energy and continue to stay inside the inva-
sion percolation cluster corresponding to the second largest
value ofr,, achieved after the absolute record.

In a full analogy with Eq.(6), the probabilty distribution
of the maximum value for the optimal SAW of lengthis

dP(Nmax>N|p:rm)

P<(1m|N)= -
m

: (12

where
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o N

FIG. 5. A typical optimal SAW of lengtiN=30 in the strong
disorder limit in 2D. The sites with random numbersr ,=0.46
are white, the sites with random numbersr, are dark gray and
(S) the site withr=0.46 islight gray. The optimal SAW in this con-
’ figuration is shown as a black line. The origin is marked by the
FIG. 4. Schematic picture of invasion clusters at three differenfl2ck square. One can see that the path stays within the percolation
succesive record values of,(S)=r(S). The positions of the cluster forp=r,,. Moreover, visual inspection shows that this path
maximal threshold ,(S,) are shown by open circles. Two optimal coincides with the longest possible SAW inside the cluster.
SAW of different lengths start from the origiiclosed circles One
SAW with N=N,2{(Sy) (thin solid ling fits inside the clustes;.
Another SAW of lengthN>N,,,.,(S;) (dashed lines achieves the criticality and will often coincide with the longest possible
maximalr ,(S;) and stays inside the clust8s corresponding to a SAW inside this cluster. Thus the fractal dimensihf,, of
new record value of the percolation probability(S,) >r (S,). the longest SAW inside the finite percolation cluster at criti-
cality must be a rigorous upper bound fiy,; .
Moreover, the longest SAW must stay inside the percola-
N-1 tion backbone connecting the origin and the last step of the
P(Nmax=N[p=rm) =1 > by(p), (13)  SAW. If the SAW enters a singly connected “dangling end,”
0 it cannot come back to the position of the last step without
self-intersection. Thus the fractal dimension of the percola-
tion backbonedg is a rigorous upper bound for botl,,x
andd,p;. Since the optimal SAW tries to be as compact as
possible in order to “fit” inside the clustdi.8] and the long-

r
m

and b,(p) is the probability of finding a maximal walk of
lengthn starting from the origin at percolation probabiliy
One can show that,(p) are polynomials with respect {o

bn(P) =2 breP® H(1-P), (19 2 . . . .
where b, ¢ are integers such that,_qb,s=sgs;. The 19 F Df ]
coefficientsb,, s can be found by exact enumeration similar ~ f~=~--<.____ D? _E,‘p
white Ref.[10]. Analyzing all clusters of size<5, one can oY "E\"“‘.gncrnaa.ﬁg_ B
easily find that 18¢ ° & ° R R R
i d
3
bo(p)=(1-p)* 1y 2 o
8  BEeeeoe—-- 9963’0" Q- U e m -
and °E1.6- @Qé@%%o IO 9
by(p)=4p(1-p)°+2p*(1—p)®+4p*(1—p)’
15 F 1
+4p3(1-p)®+p*(1-p)° (16)

In summary, the behavior of the optimal SAW path can be 1.4
explained in terms of connected basins with ene¢gye,
=exp@p,), wherep. is the critical value for percolation. In
order to minimize the energy, the SAW tries to fill the entire |G, 6. Log-Log of the effective exponetty,y(Nmay) as a
basin. When the length of the SAW is larger than the maxifunction of 1N,,,, of a SAW in a finite percolation cluster at the
mal size that may fit into the basin, the SAW jumps to an-criticality in 2D (O) and 3D (J). The symbols are the results of
other basin and tries to fill it. For very largé the SAW is  simulations, the dashed line is used as a guide to show the
almost completely confined to a finite percolation cluster atasymptotic value.

0 0.02 0.04 0.06 0.08 0.1
1N,
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est SAW tries to fill the entire backbone, it is plausible that
dopt: dmax=0ds-

PHYSICAL REVIEW E 65 056128

1.64+-0.02 in d=2

= . 1
Omax 1.87£0.05 in d=3. 7

In order to verify this hypothesis, we simulate the longest
SAW on a cluster at criticality and study by exact enumera-riaqe values are within the error bars with the values we find

tion R as a function of the maximum lengtk. We use the
Leath[19] algorithm to generate finite clusters at criticality.
We find by exact enumeration the longest SAW that start
from the origin of each Leath cluster. We perform the simu
lation over 5x< 1CP realizations of disorder il=2 and 16

in d=3. We average the square of the end-to-end distance of

the longest SAW for each value of the maximum length
Nmax- IN Fig. 6, we plot the effective exponed,.,{ Nimay
[see Eq(3)] as a function of M ,,,. We find

%

for aopt. The values ofd,,,, found here coincide with the
ractal dimension of the backbone and are significantly larger
han the values previously reportgtd].
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